If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((x^2)+x-132)/((x^2)+8x)=0
Domain of the equation: (x^2+8x)!=0We multiply all the terms by the denominator
x∈R
(x^2+x-132)=0
We get rid of parentheses
x^2+x-132=0
a = 1; b = 1; c = -132;
Δ = b2-4ac
Δ = 12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-23}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+23}{2*1}=\frac{22}{2} =11 $
| 4+3x/7+3-x/2=33/14 | | 1÷5p+9÷5p+6=30 | | 3z/10+5=6 | | 9q-14+3(1-8)=7 | | x^2+5=-8-11 | | 5(x+2)-3x=2(x-2) | | x/8+1=-5 | | z/8+4=8 | | 3x-10÷=90 | | (2-3x)=1 | | 3(y+2)=16 | | a/5+4=11 | | 4x2-12=0 | | 6+3+x=9+x | | 4z/10+2=-5 | | x/8+1=6 | | z/8+6=3 | | (3x-1)/5=-8 | | 481.5c+6)-2c=-9 | | 24=-6(m+1=+18 | | -2/5x5+3=1 | | 3-1/2x=2 | | 7*(4x-3)-9*(2x+1)=2*(x-9) | | 15(b+2)+2b-9+15+b=90 | | 10-2x=87-(21+10x) | | –3y–12=–4 | | y-2*(7-y)-5=(3y-9)/3 | | a2+25=0 | | 2j^2+12j+20=0 | | (3-2i)(4+3i)=0 | | 4x+3(5+x)=43 | | (36-8a)/4=3a+18 |